Five outstanding Ontario researchers honoured in the 2018 Polanyi Prizes
Date
January 22, 2019

TORONTO, Jan. 22, 2019

The innovative and ground-breaking work of five university researchers in Ontario has been recognized with the award of the 2018 Polanyi Prizes.

The research honoured this year includes work on new catalysts to make manufacturing cheaper and more sustainable, helping breast cancer patients beat the ill-effects of chemotherapy and radiation on the heart, and devising statistical models to evaluate teachers more accurately.

The prestigious prizes, now in their 31st year, are awarded in honour of Ontario’s Nobel Prize winner John C. Polanyi.

“This year’s Polanyi Prize winners are outstanding examples of how fundamental research contributes to Ontario’s economy and quality of life,” said David Lindsay, President and CEO of the Council of Ontario Universities.

“The research and innovation taking place every day on university campuses brings enormous benefits in terms of jobs and social progress, and is helping to create a better future for students, our communities, and the province.”

Dr. Merrilee Fullerton, Minister of Training, Colleges and Universities, said: “It is an honour to recognize and celebrate the 2018 winners of the Polanyi Prize. Polanyi Prize winners represent some of the best researchers across Ontario universities. Their successes help better the lives of the people in our province and boost Ontario’s reputation as a leader in research.”

The Polanyi Prizes are awarded each year to innovative researchers who are either continuing postdoctoral work or have recently gained a faculty appointment. Each of this year’s winners will receive $20,000 in recognition of their exceptional research in the fields of chemistry, physics, economic science and physiology/medicine.

To learn more about how the Polanyi Prizes are administered, click here.


The 2018 Polanyi Prize winners are:

Dr. Christopher Caputo
York University

Dr. Caputo, Assistant Professor in the Department of Chemistry and Tier 2 Canada Research Chair at York University, receives the Polanyi Prize in Chemistry.

How can we remove precious metals from the manufacturing process for plastics, pharmaceuticals and other industrial products? Dr. Caputo’s research aims to do so − and make production less expensive and more sustainable.

The reliance on precious metals such as palladium, platinum and rhodium to act as catalysts in industrial processes and energy production is a major problem, since they are highly rare and hugely expensive. In fact, these metals are so rare on Earth that serious consideration has been given to space projects to mine asteroids for them.

Dr. Caputo’s research is focusing on how to use “main group” chemicals – common, non-metal elements such as boron and phosphorous − to take their place as catalysts. This means manipulating them to create molecules that can mimic the high reactivity of precious metals.

The project needs to overcome the obstacles that make it difficult to form the kind of main-group molecules that can act as catalysts; one is their high sensitivity to air and water, making it necessary to synthesize novel molecules that remain stable in these conditions.

The research into these new molecules is designed to lead to cheaper, alternative catalytic processes that will boost the economy and help lead to more sustainable industries.


Dr. Jason Hunt
University of Toronto

Dr. Hunt, Dunlap Fellow at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto, receives the Polanyi Prize in Physics.

We know the Milky Way has hundreds of billions of stars, but from our vantage point among them, it’s been difficult to map where they are and what our galaxy really looks like. Dr. Hunt’s project is helping a global project do just that, more accurately than was previously thought possible.

Dr. Hunt is using a made-to-measure algorithm, PRIMAL, to sift through the enormous amount of data being sent back to Earth by the European Space Agency’s GAIA craft, which has been orbiting the sun since 2013 recording the positions and movements of stars in our galaxy in order to create a 3-D map of it. While GAIA has gathered data identifying around 1.5 billion stars, this is only around 1 per cent of the estimated total. But from that data, Dr. Hunt’s algorithm is working to recreate what the entire Milky Way looks like, even the parts we cannot see.

PRIMAL uses factors such as gravity and dark matter in combination with the data to model what the entire Milky Way must look like, including the centre bulge, the dense inner regions and the spiral arms – and can even predict what the metal content is in billions of stars. Although the GAIA mission will not be able to plot the exact location and velocity of every star, the algorithm will help scientists plot their age, shape and concentrations to great accuracy – producing a remarkable living picture of our galaxy.


Dr. Jiaying Gu
University of Toronto

Dr. Gu, Assistant Professor in the Department of Economics, University of Toronto, receives the Polanyi Prize for Economic Science.

Dr. Gu is working on novel statistical methods of accounting for unseen human factors in predicting social and economic outcomes – research that could lead to more accurate ways of evaluating teachers and understanding purchasing decisions.

Dr. Gu’s research focuses on the role of what economists call “unobserved heterogeneity” – differences between human subjects’ behaviours that cannot be directly measured, such as personal tastes and biases or innate abilities. She proposes that traditional assumptions used to factor in these differences in statistical modelling don’t always produce the most reliable results, and that her approach is to “let the data speak for itself.” As data sources become gradually more abundant in the Big Data era, her approach becomes more attractive.

In the case of teachers, performance evaluations are based largely on student grades, while the impact of their individual teaching style, being difficult to observe, is often not accurately factored in. Dr. Gu is analyzing a large dataset from United States primary schools to propose a fairer method of evaluating teachers. Her approach would identify with greater accuracy the teachers’ contribution, and lead to better policy recommendations on measuring teacher effectiveness.

Dr Gu, a Shanghai native who joined the University of Toronto after earning her PhD in the United States, will also be developing a new methodology to understand the extent to which individuals’ behaviour is driven by market conditions versus their own unique characteristics. One proposed application of the research is to develop better models to predict how consumers will react to market changes, such as the price increase or reduction of a product, or the introduction of a new product to market.


Dr. Husam Abdel-Qadir
University of Toronto

Dr. Abdel-Qadir, Assistant Professor in the Department of Medicine, University of Toronto and Cardiologist at Women’s College Hospital, receives the Polanyi Prize in Physiology/Medicine.

Dr. Abdel-Qadir’s research project will examine the suspected link between breast cancer treatments such as chemotherapy and radiation therapy with the development of atrial fibrillation, a serious heart rhythm abnormality with several adverse consequences.

In previous research on the rates of hospitalization for women with heart problems following breast cancer, Dr. Abdel-Qadir found a higher risk of atrial fibrillation (AF) in women who had had breast cancer than those who had not. His current research will now attempt to find evidence proving this link by studying data on all women in Ontario who were diagnosed with early stage breast cancer between 1988 and 2016, and comparing their data with women with no history of cancer.

People with atrial fibrillation, a type of irregular heart rhythm, are three to five times more likely to suffer a stroke, and are also more likely to develop heart failure or die prematurely. Although AF can carry debilitating symptoms such as shortness of breath and lethargy, many patients show no symptoms at all, which makes early detection of it vital.

If Dr. Abdel-Qadir’s research is able to show a direct link between breast cancer and AF, this could influence guidelines for monitoring and treating survivors, including regular surveillance and the use of blood thinners to reduce stroke risk.


Dr. Aron Broom
University of Ottawa

Dr. Broom, Postdoctoral Fellow in the Department of Chemistry and Biomolecular Sciences, University of Ottawa, receives the Polanyi Prize in Chemistry.

Enzymes are nature’s catalysts, accelerating the chemical reactions vital for the function of living organisms. But while the natural world has already constructed all the enzymes it needs, Dr. Broom is aiming to create new synthetic enzymes to help transform industry and energy production.

Dr. Broom’s research focuses on using powerful computing to design and produce new enzyme molecules that can act as high-performing catalysts to replace current catalysts such as toxic or expensive rare metals or naturally-occurring enzymes, whose power is limited. Starting with the traditional backbone structure of enzyme proteins, computer programs will attempt to design the highly-complex molecular structures that favour high catalytic properties, while deselecting elements that work against it.

Advances in computing in the 2000s have propelled the field of artificial enzymes forward, but so far practical progress has been limited to tweaking existing enzymes to improve their function. Dr. Broom’s project aims to push the boundaries in designing completely new synthetic enzymes that could lead to more productive and sustainable industry – for example, in the production of chemicals and new biomaterials, the conversion of biowaste to biofuels, and breaking down plastics and pollutants.